材料专业包括金属材料、无机非金属材料、高分子材料等多个领域。实际上,凡是跟材料相关的研究都可以算材料专业的研究方向,例如生物材料,纳米材料,陶瓷材料,复合材料等等。
主要学习材料科学的基础理论,掌握金属材料及其复合材料的成分、组织结构、生产工艺、环境与性能之间关系的基本规律。通过综合合金设计和工艺设计,提高材料的性质、质量和寿命,并开发新的材料及工艺
主要学习无机非金属材料及复合材料的生产过程、工艺及设备的基础理论、组成、结构、性能及生产条件间的关系,具有材料测试、生产过程设计、材料改性及研究开发新产品、新技术和设备及技术管理的能力
高分子材料是研究有机及生物高分子材料的制备、结构、性能和加工应用的高新技术专业
复合材料与工程专业涉及材料学、化学、物理学等多门学科,是一门极具发展潜力的多学科交叉新型专业,主要培养具备复合材料与工程领域的基础理论、专业知识和实验技能,适应现代材料学科的高科技化发展趋势,掌握复合材料设计与制备技术,重点掌握高性能纤维增强树脂基复合材料的制备技术,能从事先进复合材料与结构的设计、制备、评价的高级专业技术人才
生物材料学是生命科学与材料科学相交叉的边缘学科,已成为国内外研究的热点。
纳米材料学是一门应用科学,其目的在于研究于纳米规模时,物质和设备的设计方法、组成、特性以及应用。纳米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国国家纳米科技启动计划将其定义为“1至100纳米尺寸尤其是现存科技在纳米规模时的延伸”。
陶瓷科学与工程是使用无机非金属材料制造物体的科学技术。陶瓷工程的研究范围包括包括对原材料的提纯、对需要的化学成分的研究和生产以及对产物的结构、成分和性质的研究。 陶瓷材料可能含有全部或者部分的晶体结构,在原子层面上是大范围有序的。玻璃陶瓷可能有不定型或类似玻璃的结构,几乎没有有序度或者只能小范围有序。他们的制造方法可能通过是熔化物质冷却凝固,通过加热、或者在低温下通过化学手段如水热或溶胶凝胶法得到。 陶瓷材料特性使其能够在材料工程、电子工程、化学工程以及机械工程中得到很多应用。由于通常陶瓷非常耐热,他们可以用于很多金属和聚合物无法胜任的地方。陶瓷材料在工业中有广泛的应用,包括采矿、航天、医药、精炼、食品和化学工厂、电子行业、工业输电、以及光波导传输等等。
卢柯
homepage
卢柯,男,汉族,生于1965年5月,九三学社社员。著名材料科学专家,中国科学院院士,中国科学院金属研究所原所长、研究员,南京理工大学格莱特纳米科技研究所PI(principal investigator),纳米金属材料团队带头人。国际《材料科学与工程评论杂志》特邀为其撰写长篇综述论文并发表了专刊。
Institutes :Nanjing University of Science and Technology
南策文
homepage
南策文 ,教授,博士生导师,中国科学院院士,清华大学材料科学与工程研究院院长。1982年和1985年于华东理工大学本硕毕业。1992年获武汉工业大学(现武汉理工大学)博士学位。1999年调任清华大学材料系教授。2000年清华大学长江学者奖励计划特聘教授。2005年获国家自然科学奖二等奖。获国家发明专利22项。2011年12月,当选中国科学院院士。 2012年当选发展中国家科学院(TWAS)院士。
Institutes :Tsinghua University
杨培东
homepage
杨培东,1971年8月出生于中国苏州,国际顶尖的纳米材料学家,美国艺术与科学院院士。1988年考入中国科学技术大学应用化学系,1993年赴美国哈佛大学求学,1997年获哈佛大学化学博士学位。1999年开始先后任美国加州大学伯克利分校化学系助理教授、副教授、教授。2011年杨培东当选为汤森路透集团依据过去所发表研究论文的影响因子而确定的“全球顶尖100名化学家”,并且居于榜单前列第10位,同时入选同一标准的“顶尖100名材料科学家”榜单的首位。2012年4月18日,当选美国艺术与科学院院士
This course talks about the physics questions in materials science, for the purpose of enabling students to achieve a basic knowledge about the fundamental physics issues in materials science, hence establishing a sound background in future scientific research and practical work.
Materials Chemistry addresses chemistry-based materials from structure, preparation vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field in a concise format. This course is a foundation course for the second year undergraduates with the Materials Science and Engineering major and an elective course for the first year graduates from various material subjects. It includes the basic knowledge and principles of the materials chemistry, as well as the developments of new functional materials.
Treatment of the laws of thermodynamics and their applications to equilibrium and the properties of materials. Provides a foundation to treat general phenomena in materials science and engineering, including chemical reactions, magnetism, polarizability, and elasticity. Develops relations pertaining to multiphase equilibria as determined by a treatment of solution thermodynamics. Develops graphical constructions that are essential for the interpretation of phase diagrams. Treatment includes electrochemical equilibria and surface thermodynamics. Introduces aspects of statistical thermodynamics as they relate to macroscopic equilibrium phenomena.
"In this course, I will introduce the fundamental physics knowledge of semiconductor, including the states of electrons in semiconductor, carrier transport properties, equilibrium statistics of carriers, pn junction, MIS structure, metal-semiconductor contact, and heterojunction etc. After studing this course, the students should master the fundamental physics knowledge of semiconductor, especially the I-V characteristics of various structures, including pn junction, MIS structure, metal-semiconductor contact, and heterojunction etc., and can apply these knowledges to practical semiconductor device application. "
This course teaches fundamental knowledge and theory in solid state physics, helping students to understand basic concepts and analyze problems, and providing a solid background in their preparation for research, advanced study, or future career. It covers the following contents: classification of solids, lattice structure, lattice vibration, thermodyamic properties of crystals, defects in solids, phase transitions, free-electron theory, band theory, electron motion under electric and magnetic fields in solids, transport properties of solids. This course also introduces some active and important areas in condensed matter physics, such as semiconductors, surface physics, disordered systems, low-dimensional systems, and mesoscopic physics.
Structural chemistry is a main basic course for undergraduates in College of Chemistry and Molecular Engineering. With electronic configuration and geometry as the two main lines, structual chemistry systematically teaches three types of theory and structure: the theory of quantum mechanics and atomic structure, chemical bond theory and molecular structure, lattice theory and crystal structure. And give students the basic knowledge in three aspects: quantum chemistry, symmetry and crystal chemistry. These are of great help for the students to build up microstructure concepts and master modern characterization methods.
This course introduces the basic principles of the chemical engineering and involved equipments,including fluid mechanics, heat transfer, mass transfer, chemical reaction kinetics and dynamics.
Physical Chemistry I introduces the basic principles of the physical properties of gases, chemical thermodynamics and statistical thermodynamics. Emphasis is placed on the energy transfer in the chemical reactions, the direction and limitation of spontaneous change, the connection between the molecular energy level and the thermodynamic properties of matter and also the application of thermodynamics in the phase diagram and chemical equilibrium. Physical Chemistry II introduces the basic concepts and theories in three specific fields: (1) kinetics of chemical reactions; (2) transport process and electrochemistry; (3) interface and colloid science.
This course provides systematic knowledge of chemical analysis introducing basic titration methods (acid-base, coordination, redox titration) and gravimetric analysis, and basic knowledge of statistics analysis.
"Upon the completion of the course the student should be
able to:
• Calculate the principal stresses and strains in a loaded
component
• Solve problems using stress transformation and Mohr’s
circle
• Apply Hooke’s law for plane stress and plane strain
• Calculate stresses in thin walled spherical or cylindrical
pressure vessels
• Calculate the stresses produced by combined axial,
bending and torsional loads"
ISSN: 1748-3387
ISSN: 1749-4885
Annual Review of Condensed Matter Physics
ISSN: 1947-5454
ISSN: 0079-6425
软件和编程
SolidWorks、CAD、MATLAB、ANSYS、Origin
资质证书
建造师
技能与实验
过柱提纯、机械制图、旋蒸