模式辨识基础
Basic of Pattern Discrimination
第1章 概论
1.1模式与模式识别 1.2模式识别的主要方法 1.3监督模式识别与非监督模式识别 1.4模式识别系统举例 1.5模式识别系统的典型构成
第2章 统计决策方法
2.1引言:一个简单的例子 2.2最小错误率贝叶斯决策 2.3最小风险贝叶斯决策 2.4两类错误率、neyman-pearson决策与roc曲线 2.5正态分布时的统计决策 2.6错误率的计算 2.7离散概率模型下的统计决策举例
第3章 概率密度函数的估计
3.1引言 3.2最大似然估计 3.3贝叶斯估计与贝叶斯学习 3.4概率密度估计的非参数方法
第4章 线性分类器
4.1引言 4.2线性判别函数的基本概念 4.3fisher线性判别分析 4.4感知器 4.5最小平方误差判别 4.6最优分类超平面与线性支持向量机 4.7多类线性分类器
第5章 非线性分类器
5.1引言 5.2分段线性判别函数 5.3二次判别函数 5.4多层感知器神经网络 5.5支持向量机 5.6核函数机器
第6章 其他分类方法。
6.1近邻法 6.2决策树与随机森林 6.3罗杰斯特回归 6.4boosting方法
第7章 特征选择
7.1引言 7.2特征的评价准则 7.3特征选择的最优算法 7.4特征选择的次优算法 7.5特征选择的遗传算法 7.6以分类性能为准则的特征选择方法
第8章 特征提取
8.1引言 8.2基于类别可分性判据的特征提取 8.3主成分分析方法 8.4karhunen-loeve变换 8.5k-l变换在人脸识别中的应用举例 8.6高维数据的低维显示 8.7多维尺度法 8.8非线性变换方法简介
第9章 非监督模式识别
9.1引言 9.2基于模型的方法 9.3混合模型的估计 9.4动态聚类算法 9.5模糊聚类方法 9.6分级聚类方法 9.7自组织映射神经网络
第10章 模式识别系统的评价
10.1监督模式识别方法的错误率估计 10.2有限样本下错误率的区间估计问题 10.3特征提取与选择对分类器性能估计的影响 10.4从分类的显著性推断特征与类别的关系 10.5非监督模式识别系统性能的评价
《模式识别》
汪增福
《模式识别》
张学工